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Abstract 
The Trefftz method is widely used for solid mechanics applications since its mainstream introduction into 

the finite element approach approximately 40 years ago. The present investigation is to apply this technique to 

steady, imcompressible, non-turbulent, Newtonian fluid flow problems. We present a detailed process in developing 

F-Trefftz formulations for analyzing fluid flow problems. To verify the applicability and accuracy of the proposed 

models, three numerical examples are considered. The results obtained using both T-Trefftz and F-Trefftz methods 

are in high accuracy. 
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     Introduction 
In this paper the Trefftz method is used to 

solve the Navier-stokes problem. During the past 

decades, Trefftz numerical method, Trefftz finite 

element method in particular, has been considerably 

improved and has now become a highly efficient 

computational tool for the solutions of complex 

boundary-value problems [1-8]. Up to now, Trefftz-

elements, or T-elements for short, have been 

successfully applied to problems of plane elasticity 

[9-11], Kirchhoff plates [1], moderately thick 

Reissner-Mindlin plates [3, 5], thick plates [4], 

geometrically nonlinear plates [12-14], as well as 

three-dimensional problems [15, 16], axisymmetric 

solid mechanics [12], open boundary problems [7], 

piezoelectric problems [17, 18], potential problems 

[19, 20], transient heat conduction and plate bending 

analysis [8, 21], minimal surface problems [22], 

biphasic elastostatics [23], problems with multiple 

vertical cylinders [24], elastic contact problems [25, 

26], magnetic field analysis [27, 28], and materially 

nonlinear elasticity [29]. Further, the concept of 

special purpose functions has been found to be of 

great efficiency in dealing with various geometry or 

load-dependent singularities and local effects (e.g., 

obtuse or reentrant corners, cracks, circular or elliptic 

holes, concentrated or patch loads)[30-32]. A 

comprehensive discussion on this topic can be found 

in some review papers and books [33-35]. It should 

be mentioned that the finite element based on Trefftz 

functions can perform quite well for dealing with 

different types of problems to which it was applied. 

The main advantage of implementing the Trefftz 

method from a finite element standpoint is the 

possibility of combining the main features of the 

competing boundary element method [36, 37] and 

finite element methods [38-40]. The approximation 

bases are regular and the solving system is symmetric 

and sparse, like in the conforming finite element 

method but all structural matrices present boundary 

integral expressions, as in the conventional boundary 

element method [36]. 

Keeping the review and analysis above in mind, 

this paper describes the use of Trefftz functions to 

generate Trefftz numerical algorithms for Navier-

stokes fluid equations. Several numerical examples 

are considered to show the applications of the 

proposed Trefftz formulation. The formulations and 

theories developed from this paper can serve as a 

theoretical basis for the development of Hybrid 

Trefftz finite element method and Trefftz boundary 

element methods for fluid-flow problems.  

 

Basic equations and formulations 
Governing equations and their boundary conditions  

Navier-stokes equation is used as the 

governing equation for fluid flow problems in this 

paper. It is based on the principle of conservation of 

linear momentum for fluid. The motion of a non-

turbulent, Newtonian incompressible fluid can be 

expressed as below: 

 vbvp k   2       (1) 

where  denotes the density,  v is the velocity vector, 
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bk is the body force. 

   In the absence of any body forces (bk=0), the 

Stokes-flow equations governing the motion and 

continuity can be simplified as,  

 2 0p    v   (2) 

   v = 0               (3) 

Eq (2) is the simplified governing equation and Eq 

(3) is the divergence of the velocity. In Eqs (2) and 

(3), 
1 2v v v i j  is the velocity vector, p is the 

pressure, and  is the coefficient dynamic viscosity of 

the fluid. The Hamilton operator and Laplace 

operator for the case of two dimensional spaces are 

respectively [33] 
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In addition, to make the system complete, the 

following boundary conditions must be added 

 ,                    on  n n s s vv v v v S    (6) 

2 ,    ,     on  n s n

n s p

v v v
p p p S

n n s
 
   

     
   

  (7) 

Sp is the surface on which forces are prescribed, and 

Sv is the surface on which velocity are prescribed. 

The velocity and surface boundary conditions are 

illustrated in Fig. 1. 

 
Fig. 1 Classification of boundary zones 

 

Three essential formulations 

In the literature there are three major formulations for 

solving multi-dimensional Navier–Stokes equations, 

or simply Stokes equations. They are: (1) primitive 

variables of velocity–pressure; (2) velocity–vorticity; 

and (3) vorticity–potential. In the following, we 

present the three essential formulations which can be 

taken as a basis in developing method of fundamental 

solution formulation. 

Velocity-pressure formulation 

Taking divergence of Eq (2) and making use of Eq 

(3), it is easy to see that the pressure p is harmonic, 

that is 

00)( 222  pvvp   (8) 

Hence, through operating the Laplace operator on Eq 

(2), we find that the velocity vector v  satisfies the 

equation 

 
   

 

2 2 4 2

2 4   0 0

p

p

       

     

v v

v
  (9) 

Velocity-vorticity formulation 

By definition, the vorticity vector  is expressed as 

 ω v   (10) 

Taking the curl to Eq (2) with constant , and using 

Eq (10), we obtain the steady-state vorticity transport 

equation for Stokes flows as follows [41]: 

 
   2 2

2 2       0 0

p p 



        

    

v v

ω ω

 (11) 

Taking the curl to Eq (10) and using Eq (3) yields 

 
2 2( ) ( )       v v v v  (12) 

Vorticity-potential formulation 

The Helmholtz decomposition theorem [42] states 

that any vector can be written as the sum of two 

parts, one is curl-free and the other is solenoidal. In 

flow fields, the velocity is thereby decomposed into a 

potential flow and a viscous flow. In other words, the 

velocity v can be decomposed into the following 

form 

   v ψ   (13) 

where the scalar function  is the velocity potential, 

and  represents the stream function vector and 

satisfies 0   by its solenoidal definition. 

Substituting the above equation into Eq (3) produces 

the Laplace equation for the velocity potential  

 
00           

)()(

22 





v
 (14) 

Substituting Eq. (11) into Eq. (8) we can obtain 

 
2( )        v       (15) 

Further, applying the relation (11) for Eq (15) results 

in the final vector bi-harmonic equation for the 

stream function vector  

 
4 0   (16) 

 

Application of method of fundamental solution to 

fluid flow 

Method of fundamental solution (MFS) 

MFS, also known as F-Trefftz method, has been 

studied for many years along with the boundary 

integral equation and boundary element method. The 

meshless MFS can get rid of the mesh generation and 
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the numerical integration, thus MFS is much easier to 

implement than the indirect boundary element 

method, as far as numerical algorithm is concerned. 

MFS is based on the fundamental solutions of the 

governing equations, and its solution methodologies 

do not depend on the discretization of interior 

computational regions. The basic concept of the MFS 

is to decompose the solutions of the partial 

differential equations by superposition of the 

fundamental solutions with proper intensities. 

Wherein, the unknown coefficients can be obtained 

by the collocations of the boundary conditions. Since 

the MFS locates the source points outside the 

computational domain, no special treatments for the 

singularities of fundamental solutions are required. 

Therefore, the MFS is considered to be a grid-free 

scheme which depends only upon distances between 

pair of points of the so-called radial basis functions, 

thus MFS is more suitable for the exterior and 

irregular domain problems. MFS offers several 

advantages, first, meshing a boundary with only 

points is certainly much easier than with elements, 

second, singular integrals are avoided in the MFS 

(although singularities of the kernel still play a role), 

third, programming with the conventional MFS is 

significantly simplified compared with the boundary 

element method. All these advantages with the MFS 

have attracted continued interests from researchers 

[43-45]. 

   Three types of MFS are described and compared 

here: the first one is the traditional MFS, using 

Stokeslets (Stokes operator) as the fundamental 

solution of the Stokes function, this work was done 

by Young et al. [46]; the second one is the MFS for 

stokes equations by the dual-potential formulation, it 

transforms the governing equation of the Stokes 

problem into velocity-verticity formulation form with 

free space Green’s function as the fundamental 

solution, the third one also use the dual-potential 

formulation, but instead of using the Green’s 

function, the field variable is approximated by a 

combination of a series of T-complete functions 

satisfying the governing equation. In this paper, we 

focus on the development of dual-potential method. 

Dual-potential method 

a) Dual-potential method with F-Trefftz Method 

The dual-potential method is based on the 

combination of the Laplace equation for velocity 

potential and vector bi-harmonic equation for stream 

function vector by using the Helmholta 

decomposition theorem [46]. Here the velocity is 

written as two parts in the form given in Eq (13) by 

the Helmholtz decomposition theorem. As a result,  

and 


 can be obtained respectively using MFS from 

the Laplace equation, Eq (14), and vector bi-

harmonic equation, Eq (16). 

   Here, the fundamental solution, also known as the 

free space Green’s function is given by: 

)();( 00 xxxxG


                              (17) 

where   is a linear spatial differential operator, 

)( 0xx


  is the well-known Dirac delta function, 

),,( zyxx 


is the position of the field point, 

),,( 0000 zyxx 


is the location of the source point, 

and the distance between a field point and a source 

point is defined by 0xxr


 . By applying Fourier 

transform theory to Eq (17), the fundamental solution 

of the 2D Laplace equation is obtained as [46]: 

 rxxG ln
2

1
);( 0








 (18) 

And the fundamental solution for 2D bi-harmonic 

equation can be written as: 

 rrxxG ln
8

1
);( 2

0








 (19)                            

The principle of superposition is employed for linear 

governing equations. Therefore in the spirit of MFS 

formulation the solution is represented by a series of 

fundamental solutions with singularities located 

outside the computational domain. The unknown 

coefficients of the series of fundamental solutions are 

regarded as the strengths of corresponding 

fundamental solutions [47]. Therefore the 

discretizations of stream function  and velocity 

potential  are performed and represented as: 

  




N

j

jiji xxGx

1

0 );()(


 , (20) 
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1
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

 , (21) 

where ix


 is the i-th field point, jx0


 is the j -th 

source point, N is the number of the source points and 

j  and j , the unknown coefficients, are 

respectively associated with the fundamental 

solutions of stream function and velocity potential. 

Therefore, the velocity field is represented using Eq 

(13) as (here, jiij xxr 0


 )[46]: 
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The boundary conditions of velocity components are 

then collocated to find the unknown coefficients. It 

results in a 2N × 2N linear system. After the 2N 

unknown coefficients of j and j  are determined, 

we obtain the velocity first and then the vorticity 

fields. The vorticity field for 2D Stokes flow is 

shown as: 

  




N

j

ijji rx

1

)ln44()( 


 (24) 

b) Dual-potential method with T-complete function 

In this work, we also use the so-called ‘Dual-

potential method’, a general formulation by the dual-

potential of velocity potential and stream function 

vector for Navier-Stokes equations is developed. Our 

attentions is mainly paid to the two-dimensional 

steady-state Stokes flow problems, and a boundary-

type meshless collocation method is presented based 

on the Trefftz-complete, or T-complete for short, 

functions corresponding to Eqs (14) and (16). In the 

spirit of the Trefftz collocation method, the field 

variable is approximated by a combination of a series 

of T-complete functions satisfying the governing 

equation. So, the velocity potential  and stream 

function  can be expressed as 

    
1

,
N

j j

j

N 


x x       
1

N

j j

j

N 


x x  (25) 

where  1 2,x xx  is the arbitrary point in the 

domain, N  is the number of T-complete functions 

jN 
 and jN

, which respectively satisfy 2D Laplace 

equation and bi-harmonic equation 

  2 0jN x ,      4 0jN x  (26) 

and the unknown coefficients 
j  and 

j  are 

associated with T-complete functions of the velocity 

potential and stream function, respectively. 

    Next, the velocity field  1 2, ,0v vv  can be 

derived by way of Eq (13) as 
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x x
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  (28) 

Once the expressions of velocity components are 

given, the vorticity  0,0,ω  can be obtained by 

means of Eq (15), that is 

  2 2

1

N

j j

j

N  


     x  (29) 

For the convenience of computation, we list the 

corresponding T-complete functions satisfying the 

Laplace equation and bi-harmonic equation, 

respectively, and its derivatives here[33, 48]. 

i) T-complete functions for Laplace equation in 2D 

bounded domain: 

0 1,N  1 1cosN r x   , 
2 2sinN r x     (30) 

 2 1 cos ,m

mN r m        2 sinm

mN r m   

( 1,2,m  )  (31) 

Substituting these expressions into equation Eqs (27) 

and (28), we can obtain the first half of these 

formulations as follows: 

 12 1

1

cos 1mmN
mr m

x




 


,   
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2
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mr m

x




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
 (32) 

 12

1
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mr m

x




 


,   

 12

2

cos 1mmN
mr m

x




 


 (33) 

ii) T-complete functions for bi-harmonic equation in 

2D bounded domain: 

0 1N  , 2

1N r  ,
4 3 Re n

nN z

  , 
4 2 Im n

nN z

  , 
2

4 1 Re n

nN r z

  , 2

4 Im n

nN r z    ( 1,2,n  ) 
2 2 2

1 2r x x  ,   
1 2z x ix   

Substituting these expressions into Eqs (27) and (28), 

we can obtain the second half of these formulations 

as follows: 

(1) 
4 3 Re n

nN z

   

  14 3

1 1 1

Re Re Re
n n

nnN z z z
nz

x x z x




      
     
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(34) 

 14 3

2 2 2

Re Re Re
n n

nnN z z z
niz

x x z x




      
     
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(35) 

(2)
4 2 Im n

nN z
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 14 2

1 1 1

Im Im Im
n n

nnN z z z
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x x z x


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      
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 (36) 
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 14 2
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2
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n n
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   (41) 

And the final system can be expressed as: 

 1 1,1 1,2 ,1 ,2N Nv N N N N       x β (42) 

  2 1,2 1,1 ,2 ,1N Nv N N N N      x β     (43) 

   2 2

10 0 NN N      x β    (44) 

where 
1 1{ ,  , , ,  } .T

N N   β  

   Enforcing Eqs (42)-(44) to satisfy the specified 

boundary conditions of velocity and vorticity can 

finally produce a system of linear equations, that is 

 Hβ = F  (45) 

from which all unknowns β can be determined. Once 

all coefficients are known, by means of Eqs (42)-(44) 

we can evaluate velocity components and vorticity at 

any point in the domain under consideration. 

   Here, comparing the related terms of T-complete 

functions of Laplace operator and Bi-harmonic 

operator, we can find that 

 
   

1 2

Im Ren nz z

x x
 

 
,      

   
1 2

Re Imn nz z

x x


 
 (46) 

which means that there will be the same ith and jth 

columns in the final system matrix H due to the 

relationship that ,1 ,2i jN N    and ,2 ,1i jN N    , if all 

terms in T-complete functions of Laplace operator 

and Bi-harmonic operator are selected. As a result, 

the matrix is singular and can’t be solved directly. To 

overcome this obstacle, we ignore the terms 

4 2 Re n

nN z

   and 
4 1 Im n

nN z

   in the set of T-

complete functions of Bi-harmonic operator, and in 

order to keep the symmetry of terms, we also 

abandon the term r2 in the practical computation. In a 

word, we employ the following terms to complete our 

computation 

 2 1 Re n

nN z

  ,  2 Im n

nN z      ( 1,2,n  ) 

2

2 1 Re m

mN r z

  ,  2

2 Im m

mN r z    ( 1,2,m  ) 

Difference between the two dual-potential methods 

There is major difference between the two dual-

potential methods. First, as we mentioned above the 

function used in these two methods is different, F-

Trefftz method use free space Green’s function as the 

interpolation solution, and T-complete function 

method use T-complete function as the interpolation 

solution. Second, because we use collocation method 

here, the boundary conditions of the velocity 

components will be collocated for certain field points 

on the boundary in order to determine the unknown 

coefficients. In addition, these field points are 

selected in different way in these two methods. For F-

Trefftz method, the fundamental solutions show 

singularity when the field point and source point 

overlap, so the usage of the fundamental solutions 

require special treatment of the location of source 

point, here, MFS avoid the singularity of the 

fundamental solutions by means of distributing 

source points outside the domain (Fig. 2). For T-

complete function method, because T-complete 

functions are not singular at any time, the point can 

be choose along the boundary (Fig. 3). 

 
Fig. 2 Distribution of source and boundary field points in 

F-Trefftz method( )( cii xxbxs


 ) 
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Fig. 3 Distribution field points in method of T-complete 

function 

 

Numerical implementations 
Unit square cavity (with F-Trefftz method) 

Considering a unit square cavity filled with 

incompressible viscous Newton fluid, the solution of 

Stokes equations is given by 

 22 ,  xy y v , 2x    and 
02p y p    

which is also used to apply the velocity boundary 

conditions on the boundary. 
0p  is a constant. The 

detailed description of the unit square cavity and 

related boundary conditions can be found in Fig. 4. 

 
Fig. 4 Unit square cavity and related velocity boundary 

conditions 

To solve this problem, first we need to determine the 

dimensionless parameter b and the number of points 

N used. For the value of b, we can find that in Fig. 5, 

the average absolute error (Aaerr) decreases when the 

value of b increases and the condition number 

(controlling the property of the solution of the 

function) increases when the value of b increases. It 

can be seen from Fig. 5 that larger value of b makes 

smaller Aaerr, but produces larger   conditional 

number. Both of these two factors should be 

considered when we choose b. Based on the research 

reported in [49], we choose b = 0.5.  

 

 
Fig. 5 Effect of dimensionless parameter b  

How many collation points should be used is another 

key point, in addition to the selection of 

dimensionless parameter b. For the number of points 

N we also consider both the Aaerr and the conditional 

number, and here from Fig. 6 we can find that a 

suitable number for the collocation point is N=44. 

   After determining the value of b and N, we can 

obtain the actual solution of velocity and vorticity. 

Comparing with the analytical solution for these two 

vectors we can find that this method is very accurate 

in solving Navier-Stokes problems (Figs. 7 and 8). 
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Fig. 6 Aaerr and condition number investigation with 

different number of source points 

 

   Fig. 7 Distribution of velocity  

 

 

  

Fig. 8 Distribution of vorticity  

 

Square cavity and Circular cavity 

Having validated the accuracy of the proposed 

formulation, we apply it to two classic fluid problems 

to further assess the performance of the obtained 
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models. First, considering a unit square cavity filled 

with incompressible viscous Newton fluid moving at 

a constant velocity on the top surface, and zero 

velocities applied on the other boundaries. The 

detailed description of the unit square cavity and 

related boundary conditions can be found in Fig. 9. 

 

 
Fig. 9 Unit square cavity and related velocity boundary 

conditions 

The process of choosing dimensionless parameter b 

and the number of collocation points is the same as 

we described above. For fluid problems, the 

distribution of velocity and vorticity within the 

domain are two main factors that we concerned, these 

two factors help us analysis the property of the fluid 

at each point inside the domain. After apply the 

method we can find the distribution of velocity and 

vorticity in the domain of the square cavity in Figs. 

10 and 11.  

 
Fig. 10 Distribution of velocity vector in the square 

domain with N = 44 and b = 0.5 

 
Fig. 11 Distribution of vorticity in the square domain with 

N = 44 and b = 0.5 

 

The second numerical example is a recirculating flow 

in a 2D circular cavity. The radius of the circular 

cavity is assumed to be unity. The configuration and 

boundary conditions of the problem are shown in Fig. 

12. In the upper half of the boundary, the velocity 

=1 in a anticlockwise sense and in the remainder, 

that is, lower half boundary, =0. In addition, the 

radial velocity r=0 is imposed on the entire 

boundary of the circular cavity. 

  cossin,sincos vvvvvv ryrx  , 

]sin,[cos n  

 
Fig. 12 Circular cavity and its boundary conditions 

Fig. 13 shows the distribution of the source point and 

the field point, the point with a cross on it is source 
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point and the one with a circle on it is a field point. 

Here we also focus on the velocity and vorticity of 

the problem, after the source point and the field point 

were selected, we collocated these points with F-

Trefftz method and we can obtain the distribution of 

velocity and vorticity, shown in Figs. 14 and 15. 

 
Fig. 13 Distribution of source point and field point 

 
Fig. 14 Numerical distribution of velocity vector in a 

circular cavity 

 
Fig. 15 Numerical distribution of verticity vector in a 

circular cavity 

 

Conclusion 
In this paper, the Trefftz method combined 

the use of the MFS interpolations was developed to 

solve the Navier-stokes fluid problems. Analysis on 

the fluid problem was performed and the numerical 

experiments were carried out to verify the efficiency 

and accuracy of this method. The key idea is to 

simplify the fundamental solutions of Stokes flows 

by the combination of the much simpler fundamental 

solutions of Laplace and bi-harmonic equations via 

the Helmholtz decomposition theorem. In this way, 

the unknown coefficients of both the velocity 

potential and the stream function vector are solved. 

Here, F-Trefftz method is applied to the following 

three examples, (1) a unite square cavity, (2) a square 

cavity and (3) a circular cavity. Comparing with 

solutions of analytical and numerical results, these 

numerical experiments demonstrate that the present 

scheme is accurate. In the future, weak form Trefftz 

method can be introduced into the solution of fluid 

flow problems with Trefftz finite element method 

(TFEM). Weak form TFEM is complicated than 

collocation method in the derivation of modified 

variational functional, and no work has been done in 

that area. Therefore, the solution derived from the 

TFEM method is expected to be more accurate, 

adaptive, and stable than the one we developed here. 
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